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WP5: Estimating and correcting the diversity of a corpus
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What kind of diversity?

3 dimensions

❑Variety : 35k animals

❑Disparity : 800 species

❑Balance : a few individuals for 
each species

[Morales et al. 2021. Measuring diversity in 
heterogeneous information networks. Theoretical 
Computer Science, 859:80–115]
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What kind of diversity?

Our goal: Measuring the selection bias between 

the real-world and the digital world
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Why its so important to measure the selection 
bias?
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Why its so important to measure the selection 
bias?
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Real-world Digital world
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Challenge: No ground truth
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Principle: Comparing the proportion of unseen 
entities

 Estimating the quantity of unseen entities
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Principle: Comparing the proportion of unseen 
entities

 Computing the missing proportion = unseen entities / total
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Principle: Comparing the proportion of unseen 
entities

 selection bias = difference between missing proportions

Statistical measure of representativeness – SELEXINI 12

789k 
French words

1,178k 
English words

selection bias

? 
French words

? 
English words

Seen entities

631k 
French words

1,014k 
English words

Unseen entities

631𝑘

631𝑘 + 789𝑘
= 0.444

1,014𝑘

1,014𝑘 + 1,178𝑘
= 0.462

Missing proportion 
for French words

Missing proportion 
for English words



1

10

100

1000

10000

100000

1000000

10000000

1 10 100 1000 10000

N
u

m
b

er
 o

f 
en

ti
ti

es

Number of facts

French

English

How to estimate the quantity of unseen 
entities ?

Good-Turing frequency estimation:

#unseen entities 

= 

#entities seen only once

That’s it!
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[Good, I. J. (1953). The population frequencies of species and the 
estimation of population parameters. Biometrika, 40(3-4), 237-264.]
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Example: Part Of Speech for French words
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represented than nouns. 

 Part Of Speech bias
= standard deviation 2.80%



Experimental evaluation on French Words

Distribution of words by first 
letter ➔ a priori, weak bias

First letter bias

= standard deviation 1.12%
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What's the link between knowledge graphs 
and corpora?
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How can Good Turing be applied to texts?

❑Text is discrete data by nature.  

❑PARSEME sample:

Statistical measure of representativeness – SELEXINI 17

Language EN FR IT

Corpus Tokens 109856 457505 352985

MWE Tokens 2386 12730 9778
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How can Good Turing be applied to texts?

❑Text is discrete data by nature.  

❑PARSEME sample:
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Language EN FR IT

Corpus Tokens 109856 457505 352985

MWE Tokens 2386 12730 9778

❑Least complete : Italian, English

❑Most complete : French
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How can Good Turing be applied to MWEs?

❑Apply on MWEs as a list of 
tokens.

❑PARSEME sample:
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How can Good Turing be applied to MWEs?

❑Apply on MWEs as a list of 
tokens.

❑PARSEME sample:
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Language EN FR IT

Corpus Tokens 109856 457505 352985

MWE Tokens 2386 12730 9778

❑Sample might be too small 
for a definite conclusion

❑Most complete corpus has 
less missing tokens
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What is the minimum size for completeness?
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❑Linear variation with random sampling
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❑Too few tokens in corpus, linear variation
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Is token a small enough feature?
❑ We experiment on different character N-gram for 

lexical diversity analysis
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Language EN FR IT

Corpus uniq 2-grams 7 420 20 960 15 720

Corpus 2-grams 364 263 1 682 170 1 382 702

MWE uniq 2-grams 958 4 805 3 192

MWE 2-grams 7 459 49 779 38 848
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Is token a small enough feature?
❑ We experiment on different character N-gram for 

lexical diversity analysis
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❑ Small N  Completeness but no informativity

  Too small feature

Language EN FR IT

Corpus uniq 2-grams 7 420 20 960 15 720

Corpus 2-grams 364 263 1 682 170 1 382 702

MWE uniq 2-grams 958 4 805 3 192

MWE 2-grams 7 459 49 779 38 848



0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35

N
u

m
b

e
r 

o
f 

fa
ct

s 
/ 

4-
gr

am

Frequency

MWEs : Character 4-gram frequency

EN

FR

IT

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35

N
u

m
b

e
r 

o
f 

en
ti

ti
e

s 
/ 

4
-g

ra
m

Number of facts

Character 4-gram frequency

EN

FR

IT

Is token a small enough feature?
❑ We experiment on different character N-gram for 

lexical diversity analysis
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Language EN FR IT

Corpus uniq 4-grams 5 196 20 948 15 616

Corpus 4-grams 176 861 957 905 819 255

MWE uniq 4-grams 958 4 584 3 029

MWE 4-grams 7 459 28 717 22 702



Is token a small enough feature?
❑ We experiment on different character N-gram for 

lexical diversity analysis
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❑ Average N  Completeness for French corpus only

  But not for MWEs inside it
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Is token a small enough feature?
❑ We experiment on different character N-gram for 

lexical diversity analysis
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Language EN FR IT

Corpus uniq 6-grams 6 502 20 813 15 187

Corpus 6-grams 77 544 503 010 442 811

MWE uniq 6-grams 315 3 588 2 696

MWE 6-grams 943 13 114 11 364
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Is token a small enough feature?
❑ We experiment on different character N-gram for 

lexical diversity analysis
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Language EN FR IT

Corpus uniq 6-grams 6 502 20 813 15 187

Corpus 6-grams 77 544 503 010 442 811

MWE uniq 6-grams 315 3 588 2 696

MWE 6-grams 943 13 114 11 364

❑ Large N   No completeness for French corpus only

Sample too small



Conclusion

❑Dbnary bias analysis:
▪ Word/lexical bias detection (language bias, part of speech bias,…)

❑Corpora
▪ Insight about lexical completeness of a corpora ➔ evaluating the diversity of corpora
▪ Next step: Subword study for reducing the vocabulary size

❑ Future work:
▪ Study of synonym, antonym,… ➔ nym diversity
▪ Study of syntaxic dependencies ➔ syntax diversity
▪ How to detect relational biases?
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Thank you for your attention!

❑Mamadou Balde

❑Béatrice Markhoff

❑Sophie Nung

❑Manon Ovide

❑Ryohta Shiojiri
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