MWEs discovery, using semantic slusters, association measures, compositionality, and lexicons

Manon Scholivet June 19, 2024

Motivation

MWEs discovery

Evaluation

SELEXINI Corpus

2/23

- Too few annotated multiword expressions (MWEs)
- Difficult detection of unannotated MWEs
- How to maximize the diversity of MWE predictions nonetheless ?
- Question : Can we integrate unsupervised methods for MWE detection ?

Motivation

MWEs discovery

Candidate Extraction

Evaluation

SELEXINI Corpus

- The methods are intended to be generic and can be applied to both verbal and non-verbal expressions.
- Form of a candidate :

ightarrow Lemma1 Lemma2 ... Sorted alphabetically. The same lemma can appear multiple times

- à_le_secours_voler %
 appeler_chat_chat_un_un **

Candidate Extraction

• Methods :

Clusters
 Association Measures
 Compositionality

Lexicons

• Majority Voting?

Candidate extraction : sense clusters

Identification of a list of target verbs

ightarrow 866 verbs from the PARSEME corpus

Candidate Extraction : Method 1, Sense Clusters

- Identification of a list of target verbs
 - ightarrow 866 verbs from the PARSEME corpus
- Retrieval of 10,000 diverse examples for each verb
 - ightarrow Maximizing entropy based on wordforms in sentences

Candidate Extraction : Method 1, Sense Clusters

- Identification of a list of target verbs
 - ightarrow 866 verbs from the PARSEME corpus
- Retrieval of 10,000 diverse examples for each verb
 - $\rightarrow\,$ Maximizing entropy based on wordforms in sentences
- Sense clustering for each verb
 - ightarrow x-means algorithm, automatically selects the number of clusters (max 15)

Candidate Extraction : Method 1, Sense Clusters

- Identification of a list of target verbs
 - ightarrow 866 verbs from the PARSEME corpus
- Retrieval of 10,000 diverse examples for each verb
 - $\rightarrow\,$ Maximizing entropy based on wordforms in sentences
- Sense clustering for each verb
 - ightarrow x-means algorithm, automatically selects the number of clusters (max 15)
- Extraction of lemma n-grams in each cluster
 - \rightarrow Punctuation, stop words, and words more than 5 positions away from the target verb are removed
 - $\rightarrow\,$ Bigrams : target verb + most frequent word in the cluster
 - \rightarrow Trigrams and Quadrigrams : target verb + most frequent n-grams

For each target verb :

- Retrieval of all sentences containing the target lemma
- ☺ PMI computation between the lemma and other words
- \odot Candidate : n-grams with a score above a specified threshold

Similar method to association measures

10/23

- Wiktionary (all entries with a space)
- ↔ LEFFF (Note : Downloading appears to be currently impossible)

A lot of noise in candidate extraction :

- A candidate will be considered "reliable" if it :
 - Comes from a lexicon
 - ? Appears in more than one/two/three methods...

ightarrow Does appearing in more than one cluster count as multiple methods?

- **?** Achieves a compositional score > threshold
- ? Achieves an association measure score > threshold
- ? Other
- Majority voting

Motivation

MWEs discovery

Evaluation

Intrinsic

Extrinsic

SELEXINI Corpus

13/23

Using MWE lexicons :

For each MWE in the lexicon including the target lemma :

- ⊖ Has this MWE been found in at least one of the clusters?
- \odot Does it appear significantly more often in any of the clusters?

Allows for evaluating recall and cluster quality.

Using candidates in a task to identify MWEs never seen during training (from PARSEME).

Two methods :

- ⊖ Data augmentation
- Adding one or more "potential candidate" columns in the data

- Retrieval of all sentences where all the lemmas of a candidate appear
- \odot Tagging these candidates as gold MWEs
- ☺ Training of a new identification system with more data

- On the gold data, we add a "candidate" column, annotated similarly to the "MWE" column (without the type).
- Reliable candidates are added to this column.
- Addition of a candidate column per extraction method.

Exemple

		Le	poulpe	lui	vole	la	vedette
Train	MWE	-	-	-	1	1	1
	Candidate Cluster	-	-	-	1	1	1
	Candidate Lexicon	-	-	-	1	1	1
		Elle	vole	au	secours	du	poulpe
Train	MWE	-	1	1	1	-	-
	Candidate Cluster	-	1	-	1	-	-
	Candidate Lexicon	-	1	1	1	-	-
		L'	oiseau	vole	gracieusement		
Train	MWE	-	-	-	-		
	Candidate Cluster	-	1	1	-		
	Candidate Lexicon	-	-	-	-		
		La	fenêtre	vole	en	éclats	
Test	MWE	?	?	?	?	?	
	Candidate Cluster	-	-	1	-	1	
	Candidate Lexicon	-	-	1	1	1	

Motivation

MWEs discovery

Evaluation

SELEXINI Corpus

Creating a Database

Automatic re-annotation of the corpus

19/23

Creating a database using sqlite3

- 22 GB
- 54 million sentences
- 1,440,000,000 tokens
- Construction time : 33 hours

Ability to quickly retrieve sentences containing a specific lemma

However...

 \implies Issues with the initial quality of annotations.

- Wikisource not usable
 - \rightarrow Sentences starting in the middle of a sentence

 \rightarrow Issues with characters and presence of HTML tags : "{{nr|/ÆNEAS SYLVIUS./545}}ne me soient retirées."

- ightarrow Sentences in old french
- \rightarrow ...
- UDPipe sometimes predicts "PUNCT _ " instead of "PONCT PONCT" for rare punctuation marks (%, {, }, etc.)
- Pre-processing issues : segmentation whenever a '.' is encountered

• ...

 $30\ sentences\ evaluated\ by\ 7\ annotators\ (totaling\ 210\ sentences)\ for\ 5,460\ tokens$

	Accuracy
Correct Lemmas	97.64
Correct POS	95.31
Correct Features	92.05
Problem-free Sentences	84.30

Automatic re-annotation of the corpus

Identification of recoverable parts of the Tithir code

- ightarrow UDPipe 1, corpus split
- Selection of Syntax Annotation
 - ightarrow Yes if time permits
- Choice of tagset
 - ightarrow FTB-dep (+ UD if syntax)
- Addition of corpus to enhance diversity
- Addition of features (early stopping, ...)
- ─ Full reannotation

