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1Université Paris Cité, CNRS, LLF, Paris, France
2Aix Marseille Univ, CNRS, LIS, Marseille, France

Anna Mosolova Injecting Wiktionary to improve token-level contextual representations using contrastive learning 1



Introduction Related work Injecting sense through CL PLM fine-tuning Extrinsic evaluation Conclusion References

Overview

1. Introduction

2. Related work

3. Injecting lexicon sense examples through CL

4. Token-level PLM fine-tuning experiments

5. Extrinsic evaluation : frame induction

6. Conclusion

7. References

Anna Mosolova Injecting Wiktionary to improve token-level contextual representations using contrastive learning 2



Introduction Related work Injecting sense through CL PLM fine-tuning Extrinsic evaluation Conclusion References

Introduction

Problem:
• Contextualized token embeddings provide one representation per occurrence:

• vectors of the same word sense are not close to each other [Ethayarajh, 2019]

Our solution:

• Tuning of token-level contextual representations using contrastive learning with
hand-crafted lexicons

• Reducing dimensions of the resulting embeddings
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Contrastive learning

Contrastive learning main idea:

• bringing representations of two objects
of the same class (or of an object and
its augmented version) closer

• while pushing away all other objects
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Supervised contrastive learning

In CV, Supervised CL with multiple
positives was proposed
[Khosla et al., 2020]:

• bringing representations of all objects
of the same class closer

• while pushing away all other objects

Anna Mosolova Injecting Wiktionary to improve token-level contextual representations using contrastive learning 6



Introduction Related work Injecting sense through CL PLM fine-tuning Extrinsic evaluation Conclusion References

Self-supervised contrastive learning in NLP

Positive examples in NLP come from self-supervision mainly

Self-augmentation methods for sentence representations:

• back translation [Fang et al., 2020]

• text corruption [Liu et al., 2021a]

• dropout [Gao et al., 2021, Chuang et al., 2022]

Self-augmentation methods for token representations:

• masking random words in context [Liu et al., 2021a, Liu et al., 2021b]

• dropout [Liu et al., 2021a, Liu et al., 2021b]
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Injecting lexicon sense examples through CL

• Supervised contrastive learning
with multiple positives

• Wiktionary: example sentences
for each sense

• Examples for the same
sense: same class (positive
examples)

• Other examples for the same
lemma: other class (negative
examples)
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PLM fine-tuning experiments: some details

Training dataset - examples from
Wiktionary:

• All verbs having from 1 to 10 senses1

• Divided into 90/5/5% (train, dev, test)

Examples Verbs Senses

68,271 13,118 26,398

• Mean nb of examples per sense: 2.59

• Mean nb of senses per verb: 2.01

• Mean nb of examples per verb: 5.21

Model for fine-tuning - bert-base-uncased

1Except verbs having a single sense with a single example and multiword verbs
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Intrinsic evaluation: Word-in-Context task

Word-in-Context task [Pilehvar and Camacho-Collados, 2019]:

• Predict whether one target word in two sentences is used in the same sense or not
• Example:

• Kill the engine.
• He killed the ball.
• Answer: False
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Intrinsic evaluation: Word-in-Context task

Motivation:
• To tune the hyperparameters:

• Training: learning rate, epochs, loss parameter τ
• Dimensionality reduction (PCA): number of components, whitening application

• To evaluate if fine-tuning works
• Compare ourselves to the previous SoTA: MirrorWiC [Liu et al., 2021b]

• MirrorWiC: CL with self-augmentation on Wikipedia examples

Algorithm:

• Unsupervised approach: Threshold-based classifier on the cosine similarity between
the target token embeddings
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Word-in-Context datasets

Three WiC datasets for the evaluation:
• Original WiC

• New WiC datasets:

• Wiktionary WiC
• Development and test parts of the

Wiktionary dataset

• Framenet WiC
• Predict whether one target word in

two sentences evokes the same
frame or not

Dataset Dev Test

Original WiC 638 1400
Wiktionary WiC 1200 1200
Framenet WiC 1800 1700
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Unsupervised WiC results on dev and test set

Model Wikt WiC Frame WiC Orig WiC

BERT 58.0 70.9 67.9

BERT+PCA 58.9 73.9 69.6
BERT+FT 65.1(±0.3) 73.6(±0.4) 72.2(±0.8)

BERT+FT+PCA 64.8(±0.5) 76.0(±0.2) 73.5(±0.5)

MirrorWiC - - 71.9

Table: Accuracy results on the development sets.

Model Wikt WiC Frame WiC Orig WiC

BERT 55.9 67.3 65.4

BERT+PCA 59.6 72.4 68.4
BERT+FT 70.0(±0.9) 69.6(±0.4) 69.6(±0.6)

BERT+FT+PCA 70.5(±0.8) 73.1(±0.4) 71.4(±0.2)

MirrorWiC - - 69.6

Table: Accuracy results on the test sets.

→ PCA application improves the results even before fine-tuning

→ Major improvements on all datasets after fine-tuning

→ New SoTA on the original WiC dataset in unsupervised settings

→ Same tendencies after fine-tuning RoBERTA, BERT large, CamamBERT and
FlauBERT
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Extrinsic evaluation: Frame induction

Frame induction: identification of semantic classes (frames) that group senses of
different lemmas
• Example:

• IBM has opted for the mouse stick in the middle of the keyboard.
• Greek islanders chose to leave rather than live in poverty and terror.
• Frame: Choosing
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Frame induction algorithm

Dataset and algorithm (with modifications) are coming from [Yamada et al., 2021]:
• Two-step clustering:

• 1st step: Clustering instances of the same verb
• 2nd step: Clustering across all verbs using clusters from the 1st step

• Instances are represented as contextualized embeddings of the target lemma
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Results on frame induction dev and test sets

• Purity - ”cleanliness” of each cluster

• B-Cubed - average precision and recall
of each item

→ Improvements on the dev and test sets
after fine-tuning

Model F-Purity F-B-Cubed

BERT 76.3 70.3
BERT+PCA 75.4 69.3
BERT+FT 80.7 75.4

BERT+FT+PCA 80.3 74.8

Table: Results on the development set.

Model F-Purity F-B-Cubed

BERT 69.8 61.3
BERT+PCA 68.6 58.3
BERT+FT 70.2 61.3

BERT+FT+PCA 71.7 62.1

Table: Results on the test set.
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Results analysis

Model Purity Inv. Purity F-Purity B-Cubed Precision B-Cubed Recall F-B-Cubed

BERT 72.2 80.8 76.3 65.7 75.5 70.3
BERT+PCA 71.9 79.1 75.4 65.4 73.5 69.3
BERT+FT 80.2 81.2 80.7 74.9 75.8 75.4

BERT+FT+PCA 79.4 81.1 80.3 73.8 75.7 74.8

Table: Detailed results on the development set.

→ Purity and B-Cubed Precision increase the most after fine-tuning

→ Resulting clusters contain more same class items
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Conclusion

Contributions:
• New approach for fine-tuning token-level representation of PLMs:

• using contrastive learning with multiple positives
• leveraging examples from the crowd-sourced lexicon (Wiktionary)
• which can be extended to other languages (having a large Wiktionary)

• New SoTA result on the WiC test set in the unsupervised setting

• Gains on two new WiC test sets with different sense inventories

• Improvements on WiC tasks after fine-tuning other models (RoBERTa, BERT large)
and other languages (French)

• Some improvements on the frame induction task
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Thank you!
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Hyperparameters tuning on the WiC task

LR E τ N comp. Whitening Macro-Accuracy Orig-WiC Framenet-WiC Wikt-WiC

bert-base-uncased - - 65.6 67.9 70.9 58.0
bert-base-uncased 100 True 67.5 69.6 73.9 58.9

5e-6 2 0.5 100 True 71.4(±0.1) 73.5(±0.5) 76.0(±0.2) 64.8(±0.5)

5e-6 3 0.5 100 True 71.4(±0.2) 73.7(±0.4) 75.8(±0.2) 64.8(±0.3)

5e-6 3 0.5 300 True 71.4(±0.4) 72.0(±0.7) 77.6(±0.4) 64.4(±0.4)

5e-6 2 0.5 300 False 71.3(±0.2) 73.9(±0.4) 74.6(±0.2) 65.3(±0.4)

5e-6 2 0.5 300 True 71.3(±0.4) 71.9(±0.6) 77.8(±0.3) 64.1(±0.6)

5e-6 3 0.5 400 True 71.2(±0.4) 72.0(±0.8) 77.5(±0.4) 64.1(±0.5)

5e-6 3 0.5 200 True 71.2(±0.2) 72.6(±0.5) 76.7(±0.2) 64.3(±0.4)

5e-6 2 0.5 200 False 71.2(±0.3) 73.5(±0.5) 74.6(±0.3) 65.4(±0.3)

MirrorWiC - - - 71.9 - -
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