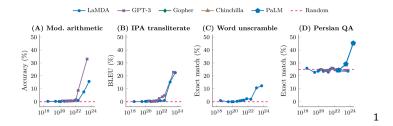
On Synonymy and Language Models

loana Ivan

Encadrants: Alexis Nasr et Carlos Ramisch

June 19, 2024



• Simple capabilities that underlie all tasks ?

¹Wei et al., Emergent Abilities of Large Language Models, $2022 + 4 \equiv 1 + 4 \equiv 1$

What can constitute a simple capability that can be evaluated ?

Э

What can constitute a simple capability that can be evaluated ? Linguistic capabilities.

Э

What can constitute a simple capability that can be evaluated ? Linguistic capabilities.

Which linguistic concepts ?

What can constitute a simple capability that can be evaluated ? Linguistic capabilities. Which linguistic concepts ? Lexical semantics. What can constitute a simple capability that can be evaluated ? Linguistic capabilities. Which linguistic concepts ? Lexical semantics. Do pre-trained causal language models recognize semantic linguistic concepts such as synonymy ?

< 1 b

- Do pre-trained causal language models recognize semantic linguistic concepts such as synonymy ?
- What type of test would be the most appropriate ?
 Does a single type of test suffice ?
 Should the test be constructed automatically or by hand ?
 Should the test be validated by a human ?

- Do pre-trained causal language models recognize semantic linguistic concepts such as synonymy ?
- What type of test would be the most appropriate ? Does a single type of test suffice ? Should the test be constructed automatically or by hand ? Should the test be validated by a human ?
- How is the LM's performance correlated with its characteristics ? (what enters into play in this performance)
 Size of training data
 Content of training data
 Tokenisation
 Model architecture

Substitution-based

word	example obtained	metric
character	She plays the character of the factory	pp1
	worker.	
role	She plays the role of the factory worker.	pp2
quality	She plays the quality of the factory worker.	рр3

Metric: $pp_2 < pp_3$?

イロト イヨト イヨト

E

SemCor

She plays the <u>character</u> lexsn="1:09:01" of the factory worker.

WordNet

character:

"1:09:00" quality, lineament (a characteristic property)

"1:07:01" fiber, fibre (the complex of attributes that determines a persons morals)

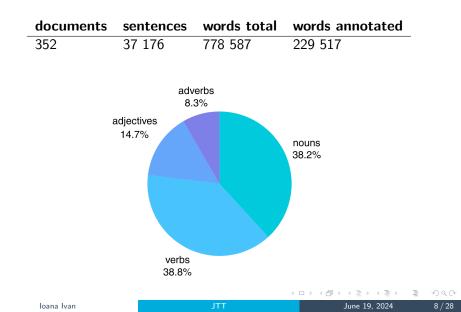
"1:09:01" role, theatrical role, part, persona (an actor's portrayal of someone in a play)

...... root synset entity · · · · · · · · · · Underlying concepts: synset3 synset4 synset portrayal%1:04:02 property%1:09:00 attribute%1:09:00 set of synonyms sharing a sense Iexical relations hypernymy hypernymy synsets are linked using relations such as synset1 synset2 hypernymy character%1:09:01 character%1:09:00 role%1:09:00 quality%1:09:00 persona%1:09:00

イロト イポト イヨト イヨト

Э

SemCor



target - synonym - other	example
power - powerfulness - ability	Constitutional government, [] and the veto power in
	world councils are but a few examples.
bit - spot - moment	But I'm not one damned bit sorry I went out to question
	the people I know
rabbit - coney - hare	We come upon a rabbit that has been caught in one of
	the brutal traps in common use.
amount - sum - quantity	Multiply the result obtained in item 3 above by the amount used for each State in item 1 above.

	Evaluator	Accuracy (185 total)
 the example is ambiguous (4) 	Annot 1	76,76%
 substitution does not work (1) (2) 	Annot 2	75,14%
• Substitution does not work (1) (2)	OLMo-1B	76,22%
 WordNet accuracy error (3) 	OLMo-7B	70,81%
	Amber	73,51%

< 4 →

토) 토

Manual choice

character:

"1:09:00" quality, lineament (a characteristic property)

"1:07:01" fiber, fibre (the complex of attributes that determines a persons morals)

 $"1{:}09{:}01"$ role, the atrical role, part, persona (an actor's portrayal of someone in a play)

Result

target	synonym	other	example
character	role	quality	She plays the character of the
			factory worker.

Three instances of human intervention or feedback :

- WordNet and SemCor
- And-picking the triples (word, synonym, other)
- 8 human evaluation of final dataset

Measure	Annot 1	Annot 2 (native)	Agree
Weird item	28/149 (18.8%)	31/200 (15.5%)	6/150
Accuracy	134/149 (89.9%)	153/169 (90.5%)	107/150 (71.3%)

11/28

Can the scores between LMs and humans be compared? NO

Humans	LMs
see all three sentences	see one sentence at a time
choose the 2nd or 3rd	no choice, give probability
might use reference sentence	does not see reference
target word highlighted	no highlights

Can a test be designed to be applicable to both? MAYBE

- we cannot be sure what heuristics humans use to perform the test
- prompting or acceptability judgements for humans ?

perplexity

$$PP(t_1,\ldots,t_n) = exp\left(-\frac{1}{t}\sum_{1}^t \log p_{\theta}(t_i|t_{< i})\right),$$

where t_1, \ldots, t_n is a sequence of n tokens and θ represents our model

- the same as the model was trained
- can be applied to both pre-trained only and fine-tuned models
- 2 minimal pairs
 - preserve length (excl. tokenisation)

Multiple aspects of *synonymy*:

- property of having the same meaning (sharing the same contexts)
 - (implicit) substitute one word by another in a context
 - (implicit) reference one word with another to avoid repetition
 - (explicit) a relation between two words named 'synonymy'

test type	substitution	reference	relation
1	Х		
2			Х
3		Х	Х
4		Х	

Substitution-based

word	example obtained	metric
character	She plays the character of the factory	pp1
	worker.	
role	She plays the role of the factory worker.	pp2
quality	She plays the quality of the factory worker.	рр3

Metric: $pp_2 < pp_3$?

E

イロト イボト イヨト イヨト

2 Explicit relation

word	relation	metric
role	Character is a synonym of role.	pp1
quality random1	Character is a synonym of quality. Character is a synonym of random1.	рр2 рр3
random10	Character is a synonym of random10.	pp12

Metric: $pp_1 < min(pp_3, ..., pp_{12})$ AND $pp_2 < min(pp_3, ..., pp_{12})$?

イロト 不得 トイヨト イヨト

3

3 Explicit relation and context

word	relation	metric
role	She plays the character of the factory worker.	pp1
	Character is a synonym of role.	
quality	She plays the character of the factory worker.	pp2
	Character is a synonym of quality.	

Metric: $pp_1 < pp_2$?

3 × 4 3 ×

Image: A matched block of the second seco

E

4 Reference and context

word	relation	metric
role	She plays the character of the factory worker.	pp1
quality	This role She plays the character of the factory worker. This quality	pp2

Metric: $pp_1 < pp_2$?

E

*ロト * 部 ト * ヨト * ヨト

Test of the synonymy relation using multiple constructions :

type	relation
explicit	A is a synonym of B
paraphrase 1	A means B
paraphrase 2	A is the same as B

test	test type	substitution	reference	syn	par1	par2
1	1	Х				
2a	2			Х		
2b	2				Х	
2c	2					Х
3a	3		Х	Х		
3b	3		Х		Х	
3c	3		Х			Х
Зс 4	4		Х			

< 1 b

э

< ∃ >

We test (only):

- polysemous words
- nouns
- one negative example (in most tests)
- no compound words

Bias:

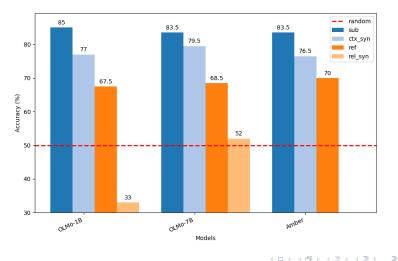
• the triples are chosen according to test 1

In preparation for the next steps - fully open models :

- training dataset open, accessible
- exact order and content as used in training
- models parameters open (with access to multiple checkpoints)
- monolingual (English)
- research paper present

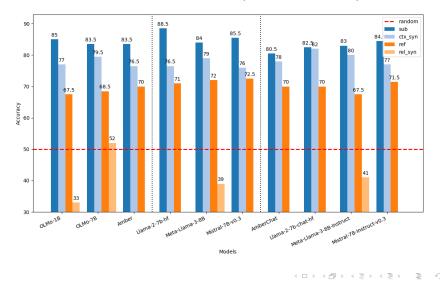
OLMo (1B, 7B), Amber (7B)

Do LMs recognize the concept of synonymy ? Are multiple tests needed or one suffice ?

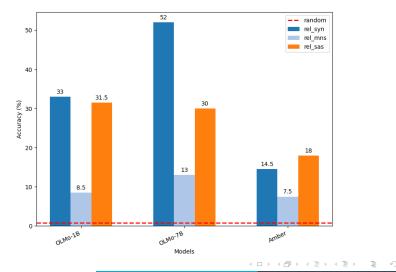


- 一司

How do the selected LMs fare when compared to their competitors ?

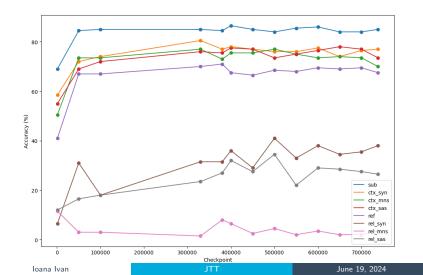


How do LMs best represent the synonymy relation ? Explicit or paraphrase ?



loana Ivan

How much data is needed to learn synonyms ?



25 / 28

Conclusions so far

- Relation tests seem difficult for language models Soil is a synonym of emancipation.
 Illusion is a synonym of duplicity.
 Idea is a synonym of tyrannosaurus.
- 2 LMs have good performance in binary tests (substitution, reference) that include context - as expected
- The preferred formulation for the relation between the three seems to be *is a synonym of*
- Gurated tests improve the accuracy in humans and language models by 10% - 15%
- LMs seem to attain peak accuracy in some tests after (only) 50000 checkpoints (200 billion tokens)

(Near)

- ① compute correlation / statistical significance between the tests
- 2 inspect more closely the learning curve on the first 50000 checkpoints
- ③ inspect frequency bias in training data
- Inspect the role of tokenisation
- **5** random candidates for the other tests as well

(Less near)

Is it legitimate to expect an LM to be coherent $? \ (it \ does \ a \ good \ job \ without)$

Why is it not coherent (from our experiments) ? Different training ?

Can we modify the data to make it more coherent ? Can we modify / analyze the fine-tuning already present in the data ?

On Synonymy and Language Models

loana Ivan

Encadrants: Alexis Nasr et Carlos Ramisch

June 19, 2024

Э

ヨト イヨト