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Systems and F1

Low F1 High F1

System appears bad System appears good
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Systems and F1: diversity of gold
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Systems and F1: diversity of system predictions

Low F1 High F1

Low diversity (sys-
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Understanding diversity

Example 1

“I just got of [1] the phone with Hai and he told me how to make

[2a] an adjustement [2a] on a day to day basis in regards to

incorrect liquidations but he also explained this is just to make the

daily P&L #’s right, if nothing were done the month and P&L

would still somehow work out [3] because adjustments [2b] would

be made [2b].”, email-enronsent44 01-0025 (typos from original

text)

Example 2

“Does this mean that for June for a certain portion of July we

should not do anything and just make adjustments [1] on a

going forward [2] basis (and assume everything will work out [3] at

month end)?”, email-enronsent44 01-0026
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Flavours of diversity

• Variety: how many types there are

• Balance: how even their distribution is

• Disparity: how fundamentally different they are

Lion-Bouton et al. [2022]

→ information theory to unify variety, balance, and even disparity

6/19



Flavours of diversity

• Variety: how many types there are

• Balance: how even their distribution is

• Disparity: how fundamentally different they are

Lion-Bouton et al. [2022]

→ information theory to unify variety, balance, and even disparity

6/19



[Chao et al., 2014]

H func
α ̸=1 =

 n∑
i ,j=1

dij ×
(
pipj
Q

)α
 1

1−α

lim
α→1

H func
α =

 n∑
i ,j=1

dij ×
(
pipj
Q

)
logb

(
pipj
Q

)
N func
α ̸=1 =

(
Hα

Q

) 1
2

lim
α→1

N func
α = bH

func
α

Q =
n∑

i ,j=1

dijpipj

7/19



Challenges

• Contradictory properties / functions

• Coming from ecology → balance properties

• Coming from ecology → dimensionality

• Curse of dimensionality
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Use case: Corpus evolution
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Use case: Summarisation (with Eve)

• Transformers for summarization

• Limited window (1024)

• Maximising diversity in that window

• rouge1: ≈ 0.16 (LEAD) → 0.34

Marginal increase in computation, and no need for fine-tuning.
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Use case: LLMs

[Guo et al., 2023]

• LLM’s output is (often) less diverse than its training set

• These less diverse data may end up used to train other LLMs

• Over multiple iterations, decrease in diversity

(although the choice of their diversity functions may not be

state-of-the-art)
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Diversutils, Codabench, and more

• Measuring diversity in practice: diversutils (written in C, but

Python interface)

• Measuring diversity on graphs: diversgraph (written in C) →
also provides indexing of large amounts of linguistic data

• Diversity plugin for Codabench (not yet)

• Morphosyntactic diversity, complexity/information-aware data

reduction for tractability (in the works)
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Appendix: Types / items

Concept Possible types Possible items

Segment annotation
Multi-Word Expressions

Named Entitites

MWE classes (VID, LVC, VPC, ...)

Canonical forms

All observed forms

Named entity classes (PER, ORG, LOC, ...)

Standardised entities

All observed forms

Canonical forms

All observed forms

Instances

Standardised forms

All observed forms

Instances

Syntactic dependencies

Dependency type

Dependency type + parent element

Dependency type + child element

Instances



Appendix: Behaviour depending on Zipfian parameters (1)



Appendix: Behaviour depending on Zipfian parameters (2)

For the sake of readability, n = 1000 in the upper figure, and n = 20 in

the lower figures.



Appendix: Behaviour depending on Zipfian parameters (3)
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