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Quick presentation

▶ 3rd year PhD student in Language Science at ATILF and LORIA, Nancy
▶ Supervised by Mathieu Constant, Karën Fort and Bruno Guillaume
▶ MSc and BSc in Linguistics and Computer Science in Sorbonne University, Paris
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Main themes of the PhD

▶ Overview on French lexical resources [Choi, 2022, Choi et al., 2023]
▶ Enriching French lexical semantic graphs with link prediction [Choi et al., 2024]
▶ Leveraging linguistic information in graph embeddings
▶ Improving Word Sense Disambiguation task in French
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Motivations

Context:
▶ Knowledge graphs and lexical graphs are incomplete

▶ Link Prediction task addresses this issue but mostly focuses on model performance
▶ Most of the work conducted on English language

We propose:
▶ a resource-oriented approach on two French lexical graphs
▶ to extract new relations from a link prediction model to enrich a sparse lexical

graph
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Link prediction task

The link prediction task consists in predicting missing triples in a graph described by a
set of triples (h, r, t) for head, relation and tail.
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REZO and JeuxDeMots [Lafourcade and Joubert, 2008]

▶ Very dense resource: 6 million nodes and 537 million edges in October 2023
▶ Made with GWAPs and semi-automatic mechanisms
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Réseau lexical du français (RL-fr) [Lux-Pogodalla and Polguère, 2011]
▶ 29,220 nodes and 72,054 edges
▶ Created manually and based on the Meaning-Text Theory [Mel’čuk, 1996]
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Datasets for French Link Prediction

▶ RezoJDM16k [Mirzapour et al., 2022] and RLF27k
▶ Transductive Link Prediction configuration
▶ Division into 80%, 10%, 10%

RezoJDM16k RLF27k

# nodes 15,746 27,068
# edges 832,093 71,017
# triples Train 665,674 57,643
# triples Valid 83,209 6,674
# triples Test 83,210 6,700
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Metrics based on predictions’ scores

▶ MR (Mean Rank): average rank of the positive triples
▶ MRR (Mean Reciprocal Rank): average of the reciprocal of ranks of the positive

triples
▶ Hits@k: proportion of positive triples in the top k ranked triples
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Training Link Prediction models on RezoJDM16k and RLF27k

Model (For RezoJDM16k) MRR ↑ MR ↓ Hits@10 ↑ Hits@3 ↑ Hits@1 ↑

TransE [Bordes et al., 2013] 0.180 200.78 0.437 0.242 0.040
TransH [Wang et al., 2014] 0.217 173.28 0.503 0.293 0.064
TransD [Ji et al., 2015] 0.216 168.18 0.500 0.290 0.065
DistMult [Yang et al., 2015] 0.219 194.16 0.446 0.252 0.109
ComplEx [Trouillon et al., 2016] 0.256 190.79 0.539 0.309 0.119
RotatE [Sun et al., 2019] 0.312 177.04 0.587 0.409 0.155
CompGCN-ConvE [Vashishth et al., 2020] 0.461 171.26 0.659 0.514 0.357

Model (For RLF27k) MRR ↑ MR ↓ Hits@10 ↑ Hits@3 ↑ Hits@1 ↑

TransE [Bordes et al., 2013] 0.278 2594.24 0.624 0.497 0.033
TransH [Wang et al., 2014] 0.250 2957.59 0.581 0.465 0.011
TransD [Ji et al., 2015] 0.255 2752.03 0.587 0.472 0.016
DistMult [Yang et al., 2015] 0.373 2748.25 0.613 0.502 0.216
ComplEx [Trouillon et al., 2016] 0.413 3447.98 0.593 0.524 0.284
RotatE [Sun et al., 2019] 0.399 3650.92 0.490 0.454 0.336
CompGCN-ConvE [Vashishth et al., 2020] 0.515 2808.68 0.627 0.559 0.450
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Analyzing CompGCN-ConvE model’s predictions
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(bonnet i - syn - ?)

▶ [tr ] cagoule - 0.893

▶ [ts] calotte - 0.085
▶ [ts] chapka - 0.082

▶ Triples not in the graph: < 0.02

→ Function score only can’t discriminate
relevant new triples
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Computing a confidence score with Monte Carlo Dropout

During inference, we apply Monte Carlo Dropout [Gal and Ghahramani, 2016] :

▶ Dropout: Randomly switching off neurons in a neural network
▶ 100 output distributions for the same input by sampling different dropout

mask
▶ We compute how many times a prediction appears in the top 10.

Example: If it appears 60 times in the top 10, the confidence score is 60%.
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Extracting candidates triples

▶ We compute the confidence score for all possible combinations of triples for
RezoJDM16k and RLF27k.

▶ Triples already existing in the graphs are removed.
▶ For RLF27K, we extract triples whose entities are not linked by an oriented

path in the graph: 95,766 triples.
▶ For RezoJDM16k, we extract triples whose entities are furthest apart

(maximum path size 3 and 4): 154,168 triples.
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Evaluating confidence score with manual annotations

Annotation of 240 triples by 4 annotators for each dataset.
The task is to determine if two entities are linked with semantic or syntactic relation.
Three annotation tags are used:
▶ 1: there is a link between the entities
▶ -1: there is no link
▶ 0: the link is ambiguous or questionable
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Correlation between annotations and confidence scores
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▶ RLF27k: high correlation - triples with high confidence score are relevant
▶ RezoJDM16k: poor correlation due to high density of the graph, two nodes

semantically different are related with a relatively short path

33 / 42



Correlation between annotations and confidence scores

0.2 0.4 0.6 0.8 1.0
Confidence score

1.0

0.5

0.0

0.5

1.0

An
no

ta
tio

n 
ta

gs

rlf27k

0.0 0.2 0.4 0.6 0.8 1.0
Confidence score

1.0

0.5

0.0

0.5

1.0

An
no

ta
tio

n 
ta

gs

rezojdm16k

▶ RLF27k: high correlation - triples with high confidence score are relevant

▶ RezoJDM16k: poor correlation due to high density of the graph, two nodes
semantically different are related with a relatively short path

34 / 42



Correlation between annotations and confidence scores

0.2 0.4 0.6 0.8 1.0
Confidence score

1.0

0.5

0.0

0.5

1.0

An
no

ta
tio

n 
ta

gs

rlf27k

0.0 0.2 0.4 0.6 0.8 1.0
Confidence score

1.0

0.5

0.0

0.5

1.0

An
no

ta
tio

n 
ta

gs

rezojdm16k

▶ RLF27k: high correlation - triples with high confidence score are relevant
▶ RezoJDM16k: poor correlation due to high density of the graph, two nodes

semantically different are related with a relatively short path

35 / 42



Determining a confidence score threshold for RLF27k
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→ A confidence threshold of 0.95 results in 100% of triples annotated as correct in
RLF27k, which gives us 398 potential good triples out of the 95,766 candidates.
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Relevant new triples for RLF27k

▶ (kidnappeur, Syn, ravisseur I) (kidnapper, Syn, abductor I)
▶ (marchande, Syn, débitante) (merchant, Syn, retailer)
▶ (motocycliste n-fem, Syn, motarde) (motorcyclist n-fem, Syn, biker)
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Refined triples in RezoJDM16k

▶ 31% of the edges in RezoJDM16k are the general relation associated

In RezoJDM16k In CompGCN-ConVE’s predictions

(infirmière, associated, personne) (infirmière, is_a, personne)
(herpès, associated, médecine) (herpès, domain, médecine)
(ouvrir, associated, fermer) (ouvrir, antonym, fermer)

38 / 42



Conclusion

Contributions:
▶ Link prediction on 2 French lexical semantic graphs with 7 models
▶ Addition of a confidence score to CompGCN-ConvE model’s predictions
▶ Qualitative analysis of predictions based on manual annotations
▶ Extraction of new triples in RL-fr

Limitations:
▶ Need for manual verification of candidate triples
▶ Influence of the representation of polysemy in different nodes in the RL-fr
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Work in progress...

▶ Integrating graph embeddings trained in Link Prediction into EWISER
model [Bevilacqua and Navigli, 2020]

▶ Testing on RL-fr lexicographical examples [Sinha et al., 2022]
▶ Leveraging supersenses to generate semi-automatically WSD annotations on

fr-SemCor [Barque et al., 2020] with AMuSE-WSD [Orlando et al., 2021]
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Thank you for your attention
Questions?
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Inter-annotators agreements
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